Extensions 1→N→G→Q→1 with N=C22 and Q=D6⋊C4

Direct product G=N×Q with N=C22 and Q=D6⋊C4
dρLabelID
C22×D6⋊C496C2^2xD6:C4192,1346

Semidirect products G=N:Q with N=C22 and Q=D6⋊C4
extensionφ:Q→Aut NdρLabelID
C22⋊(D6⋊C4) = C24.5D6φ: D6⋊C4/C2×C4S3 ⊆ Aut C2224C2^2:(D6:C4)192,972
C222(D6⋊C4) = C24.60D6φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C2296C2^2:2(D6:C4)192,517
C223(D6⋊C4) = C24.76D6φ: D6⋊C4/C2×C12C2 ⊆ Aut C2296C2^2:3(D6:C4)192,772
C224(D6⋊C4) = C24.59D6φ: D6⋊C4/C22×S3C2 ⊆ Aut C2248C2^2:4(D6:C4)192,514

Non-split extensions G=N.Q with N=C22 and Q=D6⋊C4
extensionφ:Q→Aut NdρLabelID
C22.1(D6⋊C4) = C4.(C2×D12)φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C2296C2^2.1(D6:C4)192,561
C22.2(D6⋊C4) = D6⋊C840C2φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C2296C2^2.2(D6:C4)192,688
C22.3(D6⋊C4) = C23.54D12φ: D6⋊C4/C2×Dic3C2 ⊆ Aut C2296C2^2.3(D6:C4)192,692
C22.4(D6⋊C4) = C4○D12⋊C4φ: D6⋊C4/C2×C12C2 ⊆ Aut C2296C2^2.4(D6:C4)192,525
C22.5(D6⋊C4) = (C22×C8)⋊7S3φ: D6⋊C4/C2×C12C2 ⊆ Aut C2296C2^2.5(D6:C4)192,669
C22.6(D6⋊C4) = C23.28D12φ: D6⋊C4/C2×C12C2 ⊆ Aut C2296C2^2.6(D6:C4)192,672
C22.7(D6⋊C4) = M4(2).31D6φ: D6⋊C4/C2×C12C2 ⊆ Aut C22484C2^2.7(D6:C4)192,691
C22.8(D6⋊C4) = C3⋊C2≀C4φ: D6⋊C4/C22×S3C2 ⊆ Aut C22248+C2^2.8(D6:C4)192,30
C22.9(D6⋊C4) = (C2×D4).D6φ: D6⋊C4/C22×S3C2 ⊆ Aut C22488-C2^2.9(D6:C4)192,31
C22.10(D6⋊C4) = C23.D12φ: D6⋊C4/C22×S3C2 ⊆ Aut C22488-C2^2.10(D6:C4)192,32
C22.11(D6⋊C4) = C23.2D12φ: D6⋊C4/C22×S3C2 ⊆ Aut C22248+C2^2.11(D6:C4)192,33
C22.12(D6⋊C4) = C23.3D12φ: D6⋊C4/C22×S3C2 ⊆ Aut C22248+C2^2.12(D6:C4)192,34
C22.13(D6⋊C4) = C23.4D12φ: D6⋊C4/C22×S3C2 ⊆ Aut C22488-C2^2.13(D6:C4)192,35
C22.14(D6⋊C4) = (C2×C4).D12φ: D6⋊C4/C22×S3C2 ⊆ Aut C22488+C2^2.14(D6:C4)192,36
C22.15(D6⋊C4) = (C2×C12).D4φ: D6⋊C4/C22×S3C2 ⊆ Aut C22488-C2^2.15(D6:C4)192,37
C22.16(D6⋊C4) = C24.12D6φ: D6⋊C4/C22×S3C2 ⊆ Aut C2248C2^2.16(D6:C4)192,85
C22.17(D6⋊C4) = C423Dic3φ: D6⋊C4/C22×S3C2 ⊆ Aut C22484C2^2.17(D6:C4)192,90
C22.18(D6⋊C4) = C12.2C42φ: D6⋊C4/C22×S3C2 ⊆ Aut C2248C2^2.18(D6:C4)192,91
C22.19(D6⋊C4) = (C2×C24)⋊C4φ: D6⋊C4/C22×S3C2 ⊆ Aut C22484C2^2.19(D6:C4)192,115
C22.20(D6⋊C4) = C12.20C42φ: D6⋊C4/C22×S3C2 ⊆ Aut C22484C2^2.20(D6:C4)192,116
C22.21(D6⋊C4) = M4(2)⋊4Dic3φ: D6⋊C4/C22×S3C2 ⊆ Aut C22484C2^2.21(D6:C4)192,118
C22.22(D6⋊C4) = C24.56D6φ: D6⋊C4/C22×S3C2 ⊆ Aut C2296C2^2.22(D6:C4)192,502
C22.23(D6⋊C4) = C4⋊C436D6φ: D6⋊C4/C22×S3C2 ⊆ Aut C2248C2^2.23(D6:C4)192,560
C22.24(D6⋊C4) = C4⋊C4.237D6φ: D6⋊C4/C22×S3C2 ⊆ Aut C2296C2^2.24(D6:C4)192,563
C22.25(D6⋊C4) = C426D6φ: D6⋊C4/C22×S3C2 ⊆ Aut C22484C2^2.25(D6:C4)192,564
C22.26(D6⋊C4) = C23.51D12φ: D6⋊C4/C22×S3C2 ⊆ Aut C2296C2^2.26(D6:C4)192,679
C22.27(D6⋊C4) = D66M4(2)φ: D6⋊C4/C22×S3C2 ⊆ Aut C2248C2^2.27(D6:C4)192,685
C22.28(D6⋊C4) = C23.53D12φ: D6⋊C4/C22×S3C2 ⊆ Aut C2248C2^2.28(D6:C4)192,690
C22.29(D6⋊C4) = M4(2)⋊24D6φ: D6⋊C4/C22×S3C2 ⊆ Aut C22484C2^2.29(D6:C4)192,698
C22.30(D6⋊C4) = C4.8Dic12central extension (φ=1)192C2^2.30(D6:C4)192,15
C22.31(D6⋊C4) = C4.17D24central extension (φ=1)96C2^2.31(D6:C4)192,18
C22.32(D6⋊C4) = (C22×S3)⋊C8central extension (φ=1)48C2^2.32(D6:C4)192,27
C22.33(D6⋊C4) = (C2×Dic3)⋊C8central extension (φ=1)96C2^2.33(D6:C4)192,28
C22.34(D6⋊C4) = D122C8central extension (φ=1)96C2^2.34(D6:C4)192,42
C22.35(D6⋊C4) = Dic62C8central extension (φ=1)192C2^2.35(D6:C4)192,43
C22.36(D6⋊C4) = C12.8C42central extension (φ=1)48C2^2.36(D6:C4)192,82
C22.37(D6⋊C4) = C24.13D6central extension (φ=1)48C2^2.37(D6:C4)192,86
C22.38(D6⋊C4) = C12.C42central extension (φ=1)192C2^2.38(D6:C4)192,88
C22.39(D6⋊C4) = (C2×C24)⋊5C4central extension (φ=1)192C2^2.39(D6:C4)192,109
C22.40(D6⋊C4) = C12.9C42central extension (φ=1)192C2^2.40(D6:C4)192,110
C22.41(D6⋊C4) = M4(2)⋊Dic3central extension (φ=1)96C2^2.41(D6:C4)192,113
C22.42(D6⋊C4) = C12.3C42central extension (φ=1)48C2^2.42(D6:C4)192,114
C22.43(D6⋊C4) = C2×C424S3central extension (φ=1)48C2^2.43(D6:C4)192,486
C22.44(D6⋊C4) = C2×C23.6D6central extension (φ=1)48C2^2.44(D6:C4)192,513
C22.45(D6⋊C4) = C2×C6.D8central extension (φ=1)96C2^2.45(D6:C4)192,524
C22.46(D6⋊C4) = C2×C6.SD16central extension (φ=1)192C2^2.46(D6:C4)192,528
C22.47(D6⋊C4) = C2×C2.Dic12central extension (φ=1)192C2^2.47(D6:C4)192,662
C22.48(D6⋊C4) = C2×D6⋊C8central extension (φ=1)96C2^2.48(D6:C4)192,667
C22.49(D6⋊C4) = C2×C2.D24central extension (φ=1)96C2^2.49(D6:C4)192,671
C22.50(D6⋊C4) = C2×C12.46D4central extension (φ=1)48C2^2.50(D6:C4)192,689
C22.51(D6⋊C4) = C2×C12.47D4central extension (φ=1)96C2^2.51(D6:C4)192,695
C22.52(D6⋊C4) = C2×D12⋊C4central extension (φ=1)48C2^2.52(D6:C4)192,697
C22.53(D6⋊C4) = C2×C6.C42central extension (φ=1)192C2^2.53(D6:C4)192,767
C22.54(D6⋊C4) = C6.C4≀C2central stem extension (φ=1)48C2^2.54(D6:C4)192,10
C22.55(D6⋊C4) = C4⋊Dic3⋊C4central stem extension (φ=1)48C2^2.55(D6:C4)192,11
C22.56(D6⋊C4) = C42.D6central stem extension (φ=1)96C2^2.56(D6:C4)192,23
C22.57(D6⋊C4) = C42.2D6central stem extension (φ=1)192C2^2.57(D6:C4)192,24
C22.58(D6⋊C4) = C23.35D12central stem extension (φ=1)48C2^2.58(D6:C4)192,26
C22.59(D6⋊C4) = C22.2D24central stem extension (φ=1)48C2^2.59(D6:C4)192,29
C22.60(D6⋊C4) = C4.Dic12central stem extension (φ=1)192C2^2.60(D6:C4)192,40
C22.61(D6⋊C4) = C12.47D8central stem extension (φ=1)192C2^2.61(D6:C4)192,41
C22.62(D6⋊C4) = C4.D24central stem extension (φ=1)96C2^2.62(D6:C4)192,44
C22.63(D6⋊C4) = C12.2D8central stem extension (φ=1)192C2^2.63(D6:C4)192,45

׿
×
𝔽